

AASHTO Innovation Initiative

[Proposed] Nomination of Innovation Ready for Implementation

Sponsor

Nominations must be submitted by an AASHTO member DOT willing to help promote the innovation. If selected, the sponsoring DOT will be asked to promote the innovation to other states by participating on a Lead States Team supported by the AASHTO Innovation Initiative.

- 1. Sponsoring DOT (State): FDOT
- 2. Name and Title: Hailing Zhang / District Structures Design Engineer

Organization: FDOT

Street Address: 1000 NW 111 Ave

City: Miami

State: FL

Zip Code: 33172

Email: Hailing.Zhang@dot.state.fl.us

Phone: (305)-470-5484

Fax: (305) 470-5293

Innovation Description (10 points)

The term "innovation" may include processes, products, techniques, procedures, and practices.

3. Name of the innovation:

Dual Upright Overhead Sign Structures Design Program

4. Please describe the innovation.

Developed an expedited method to structurally analyze and design Dual-Upright Overhead Sign Structures.

5. What is the existing baseline practice that the innovation intends to replace/improve?

Prior to this team's innovation, a simplified method was only available to structurally design Single-Upright overhead sign structures. Whenever a Dual-Upright Overhead Sign Structure had to be designed, the engineers had to perform several time-consuming structural calculations independently and create new 3-dimensional computer models from scratch for each specific design.

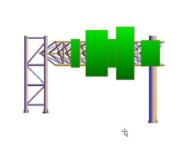
6. What problems associated with the baseline practice does the innovation propose to solve?

Overhead sign structures support the green and white travel destination sign panels placed above travel lanes on freeways. The structure spans across all the lanes on freeways for one direction and are typically supported on each side of the freeway by two round vertical uprights (1' to 3' diameter columns); one placed in the median and the other on the roadside. Within urban areas, where a grassed median is not present, the left upright (aka the median upright) of overhead sign structures is ideally placed on top of a 2-foot-wide median barrier wall. As traffic demand has increased over the years, the width of freeways has increased to accommodate more travel lanes. It is now more common that the required span length of new overhead sign structures has increased to a point where the diameter of the structurally required single upright is larger than the available 2-foot median barrier wall width. The engineering solution is to provide a Dual-Upright on top of the barrier wall that consists of 2 individual uprights (each with widths less than 2 feet) connected to each other via horizontal and diagonal bracing.

7. Briefly describe the history of its development.

This teams method for designing Dual-Upright Overhead Sign Structures (OHSS) was developed by building-upon and modifying the software program developed by FDOT's Structures Design Office to design single upright overhead sign structures. The newly developed software application for Dual-Upright OHSS has new coding to address the unique and complicated analysis introduced by having Dual-Uprights. The software also includes and modifies the coding used in the original program for designing Single-Upright OHSS.

8. What resources—such as technical specifications, training materials, and user guides—have you developed to assist with the deployment effort? If appropriate, please attach or provide weblinks to reports, videos, photographs, diagrams, or other images illustrating the appearance or functionality of the innovation (if electronic, please provide a separate file). Please list your attachments or weblinks here.


Preliminary standard design plans were developed. See attached file.

Attach photographs, diagrams, or other images here. If images are of larger resolution size, please provide as separate files.

State of Development (40 points)

Innovations must be successfully deployed in at least one State DOT. The AII selection process will favor innovations that have advanced beyond the research stage, at least to the pilot deployment stage, and preferably into routine use.

9. How ready is this innovation for implementation in an operational environment? Please select from the following options. Please describe.

 \boxtimes Prototype is fully functional and yet to be piloted

 \square Prototype has been piloted successfully in an operational environment

Technology has been deployed multiple times in an operational environment

 \Box Technology is ready for full-scale implementation

The preliminary design program and standard plans are ready but have not been finalized yet.

10. What additional development is necessary to enable implementation of the innovation for routine use?

FDOT central office needs to finalize the design program and standard plans and release them for use.

11. Are other organizations using, currently developing, or have they shown interest in this innovation or of similar technology?? □ Yes ⊠ No

If so, please list organization names and contacts. Please identify the source of this information.

Organization	Name	Phone	Email
<mark>Click or tap here to</mark>	<mark>Click or tap here to</mark>	Click or tap here to	Click or tap here to
<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>
<mark>Click or tap here to</mark>	<mark>Click or tap here to</mark>	Click or tap here to	Click or tap here to
<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>
<mark>Click or tap here to</mark>	<mark>Click or tap here to</mark>	Click or tap here to	Click or tap here to
<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>	<mark>enter text.</mark>

Potential Payoff (30 points)

Payoff is defined as the combination of broad applicability and significant benefit or advantage over baseline practice.

12. How does the innovation meet customer or stakeholder needs in your State DOT or other organizations that have used it?

Structural engineers across the state are designing numerous dual upright sign structures.

13. Identify the top three benefit types your DOT has realized from using this innovation. Describe the type and scale of benefits of using this innovation over baseline practice. Provide additional information, if available, using quantitative metrics, to describe the benefits.

Benefit Types	Please describe:
Cost Savings	With a savings of approximately 100 staff hours per design, and based on a total consultant structural engineer rate of \$150/hour; the cost savings is estimated at \$15,000 per Dual Upright Overhead Sign Structure designed.
Improved Quality	The specifications and plans will be standardized for the entire state for consistency.
Shorter Schedule	The expedited method to structurally analyze and design Dual-Upright Overhead Sign Structures has increased productivity tremendously. Using the new method, a new Dual-Upright OHSS may be structurally analyzed and design in about 3 days (24 staff-hours). Before this new method, each design was typically taking about 3 to 4 weeks (120 – 160 staff hours).

Provide any additional description, if necessary:

Click or tap here to enter text.

14 How broadly might this innovation be deployed for other applications. in the transportation industry (including other disciplines of a DOT, other transportation modes, and private industry)?

This new method to analyze and design Dual-Upright Overhead Sign Structures is openly available for free to everyone and may be used by ALL structural engineers throughout the state of Florida.

Market Readiness (20 points)

The AII selection process will favor innovations that can be adopted with a reasonable amount of effort and cost, commensurate with the payoff potential.

15. What specific actions would another organization need to take along each of the following dimensions to adopt this innovation?

Check boxes that apply	Dimensions	Please describe:
	Gaining executive leadership support	Click or tap here to enter text.
	Communicating benefits	Click or tap here to enter text.
	Overcoming funding constraints	Click or tap here to enter text.
	Acquiring in-house capabilities	Click or tap here to enter text.
	Addressing legal issues (if applicable)	Click or tap here to enter text.
	(e.g., liability and intellectual property)	
	Resolving conflicts with existing	Click or tap here to enter text.
	national/state regulations and standards	
	Other challenges	Other state DOTs would need to
		either adopt FDOT's standards
\boxtimes		for dual upright sign structures
		or modify the program to match
		their states' standards.

16. Please provide details of cost, effort, and length of time expended to deploy the innovation in your organization.

Cost: 1000 staff hours

Level of Effort: moderate

Time: 2 years

17. To what extent might implementation of this innovation require the involvement of third parties, including vendors, contractors, and consultants? If so, please describe. List the type of expertise required for implementation.

None.

Dual Post Upright Span Sign Program LRFD Beta v1.0

© 2019 Florida Department of Transportation

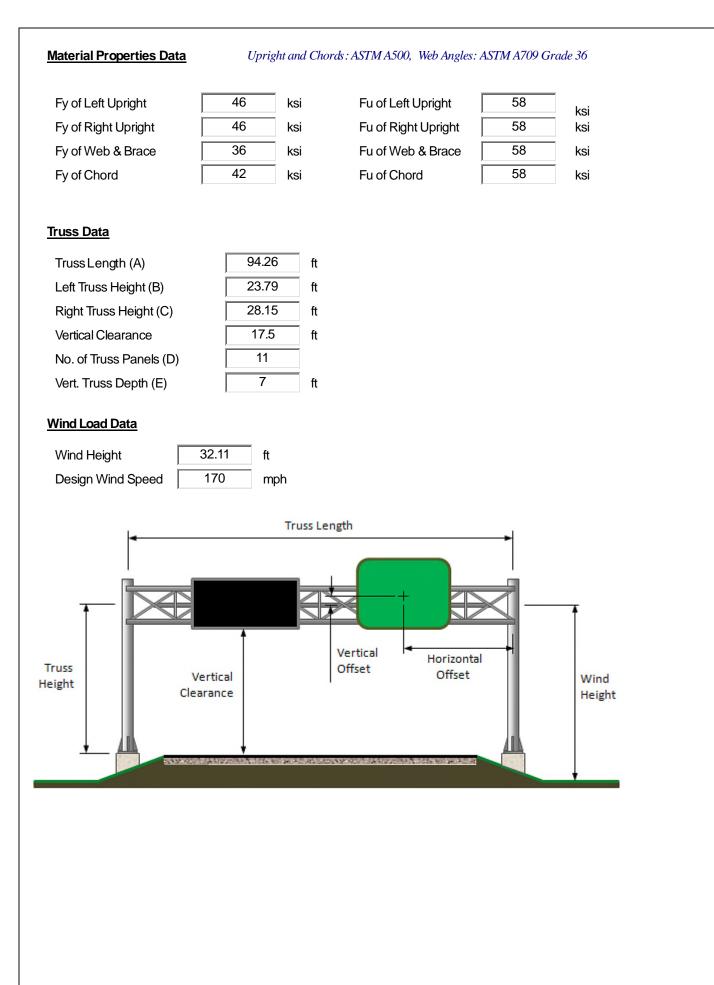
Read Disclaimer at http://www.dot.state.fl.us/structures

Beta version revised by D6 Structures Office

Design Specifications & References:

[LRFD LTS] - AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires & Traffic Signals
 [AASHTO] - AASHTO LRFD Bridge Design Specifications.
 [SMn] - FDOT Structures Manual. n=1: Structures Design Guidelines; n=3: FDOT Modifications to Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals (LRFDLTS).
 [Index] - FDOT Standard Plans.
 [AISC] - Steel Construction Manual.

Reference:C:\Users\rd647hz\Desktop\2020-1-28 DualUpright Span Sign Structure LRFDv1.0Beta_V4.0 bolted-dual-upright connection\LRFD


Data Files Folder

Change Folder

C:\Users\rd647hz\Desktop\2020-1-28 DualUpright Span Sign Structure LRFDv1.0Beta_V4.0 bolted-dual-upright connection\Data\

Open Existing Data File (optional)

GGI-5 OHS-1_N	ew Input Matrix.dat			Refresh List Open File	
Project Data					
Project Name	SR9A/I-95 N.of Biscayne Car	nal to SR86	0/Miami Garden Dr		
Project No.	428358-5-52-01				
Designed by	DCC	Date	3/8/2019		
Checked by		Date			
Sign Structure Da	ata				
Sign Number	OHS-1				
Station	28+26				

Load Data

Reset Load Data

Sign Panels

Sign Panels	Sign Panels Show Panels 11-20						
Sign Panel Number	Panel Length (ft)	Panel Height (ft)	Horizontal Offset (ft)	Vertical Offset* (ft)	Back-side Mounted?	Panel Weight (psf)	
1	22	10	20.3	0		5	
2	18	14.333333	42.3	0		5	
3	18	2.5	42.3	8.416667		5	
4	6	2.5	48.3	10.916667		5	
5	7.5	16	55.1	0		5	
6	8	15	80	0		5	
7							
8							
9							
10							

DMS Panels

DMS Panel Number	Panel Length (ft)	Panel Height (ft)	Panel Depth (ft)	Horizontal Offset (ft)	Vertical Offset* (ft)	Panel Weight (psf)
1						
2						
3						

Walkw ays

Walkway Number	Walkway Length (ft)	Walkway Width (ft)	Number of Hangers	Horizontal Offset (ft)	Vertical Offset* (ft)	Walkway Weight (plf)
1						
2						

Attachments

Attachment Number	Projected Area (sq. ft)	Drag Coeff., C _d	Attached to Which Chord Member? (Top / Bottom / Back)	Horizontal Offset (ft)	Attachment Weight (lb)
1					
2					
3					

* Vertical offsets are input as negative values when element centroid is below the truss centerline.

Member Data

Member Properties

Chord Size (F)

3.50 O.D. Pipe, 0.216" Wall"
4.00 O.D. Pipe, 0.226" Wall"
4.50 O.D. Pipe, 0.237" Wall"
4.50 O.D. Pipe, 0.337" Wall"
5.563 O.D. Pipe, 0.258" Wall'
5.563 O.D. Pipe, 0.375" Wall"
6.625 O.D. Pipe, 0.432" Wall'
8.625 O.D. Pipe, 0.500" Wall"
8.625 O.D. Pipe, 0.625" Wall"
CUSTOM

Web Size (G)

Angle 2-1/2 x 2-1/2 x 1/4
Angle 3 x 3 x 1/4
Angle 3 x 3 x 5/16
Angle 3-1/2 x 3-1/2 x 5/16
Angle 3-1/2 x 3-1/2 x 3/8
Angle 4 x 4 x 3/8
Angle 4 x 4 x 1/2
Angle 5 x 5 x 1/2
Angle 6 x 6 x 1
CUSTOM

Left Upright Size (H)

HSS 18 x 18 x 7/8
HSS 18 x 18 x 3/4
HSS 16 x 16 x 7/8
HSS 16 x 16 x 3/4
HSS 16 x 16 x 5/8
HSS 16 x 16 x 1/2
HSS 16 x 16 x 3/8
HSS 16 x 16 x 5/16
HSS 14 x 14 x 5/8
HSS 14 x 14 x 1/2
HSS 14 x 14 x 3/8

Left Brace Size (L)

Angle 2-1/2 x 2-1/2 x 1/4
Angle 3 x 3 x 1/4
Angle 3 x 3 x 5/16
Angle 3-1/2 x 3-1/2 x 5/16
Angle 3-1/2 x 3-1/2 x 3/8
Angle 4 x 4 x 3/8
Angle 4 x 4 x 1/2
Angle 5 x 5 x 1/2
Angle 6 x 6 x 1
CUSTOM

Design Properties

Outside Diameter (D)
Wa l Thickness (t)
Area (A)
Moment of Inertia (I)
Radius of Gyration (r)
Torsional Constant (J)
Nominal Weight

6.63	in
0.402	in
7.86	in ²
38.2	in ⁴
2.2	in
76.4	in ⁴
28.6	plf

5

0.5

4.79

1.42

11.3

1.53

0.98

16.2

in

in

in²

in

in⁴

in

in

plf

Design Properties

Leg Length (b)
Leg Thickness (t)
Area (A)
Dist. to Centroid (x)
X Moment of Inertia ($\rm I_{x})$
X Rad. of Gyration (r_x)
Z Rad. of Gyration (r_z)
Nominal Weight

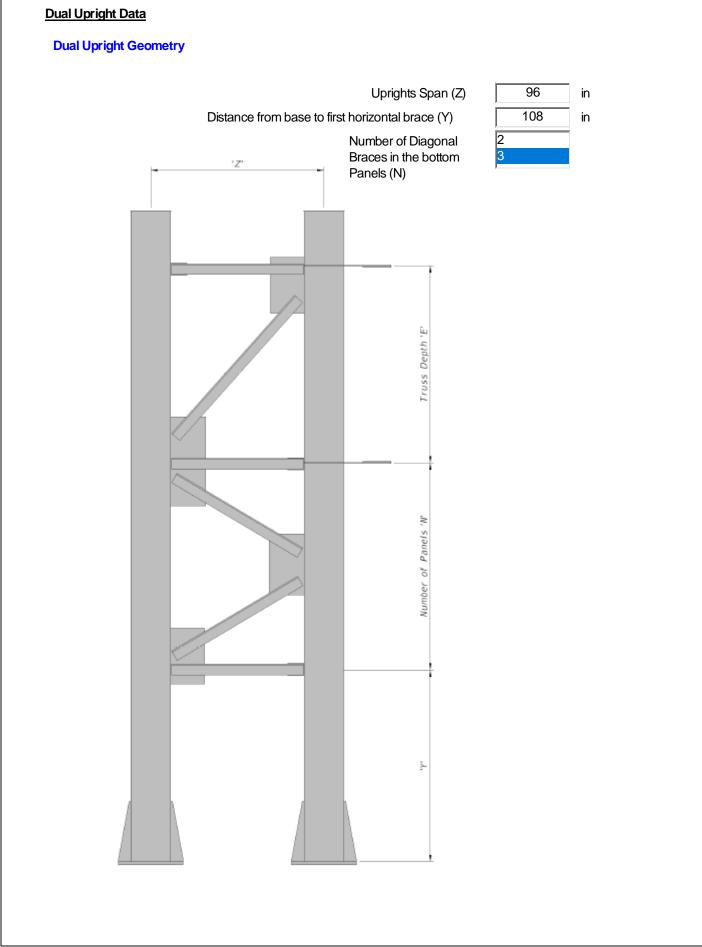
Design Properties

Outside Width (D)		
Wa l Thickness (t)		
Area (A)		
Moment of Inertia (I)		
Radius of Gyration (r)		
Torsional Constant (J)		
Nominal Weight		

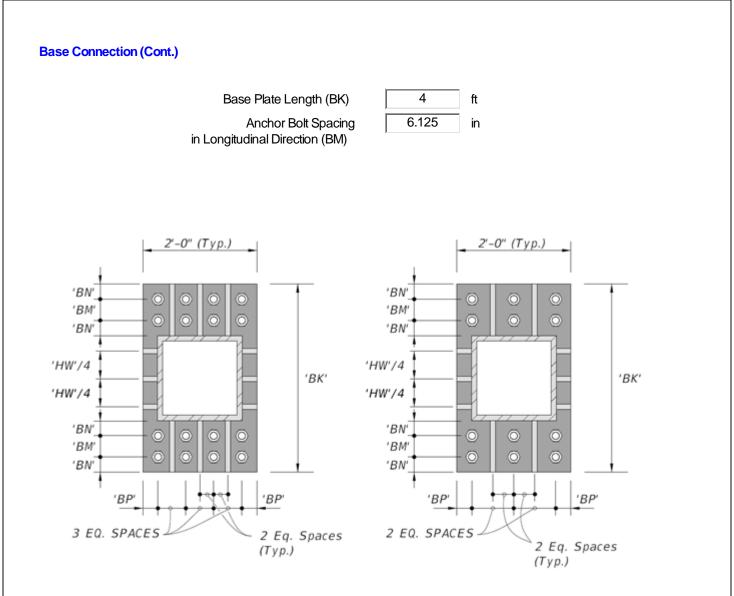
$\begin{array}{|c|c|c|c|c|}\hline 16 & in \\ \hline 0.625 & in \\\hline 35 & in^2 \\\hline 1370 & in^4 \\\hline 6.25 & in \\\hline 2170 & in^4 \\\hline 127.37 & plf \\\hline \end{array}$

Design Properties

Leg Length (b)
Leg Thickness (t)
Area(A)
Dist. to Centroid (x)
X Moment of Inertia (${\rm I_{\chi}})$
X Rad. of Gyration (r_x)
Z Rad. of Gyration (r _z)
Nominal Weight


6	in
1	in
11	in ²
1.86	in
35.4	in ⁴
1.79	in
1.17	in
37.4	plf

Right Upright Size (J)


Design Properties

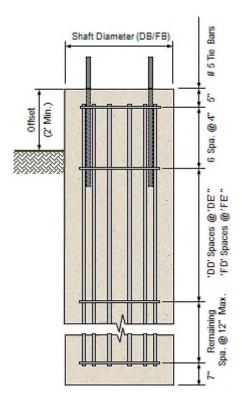
Outside Diameter (D)
Wa l Thickness (t)
Area(A)
Moment of Inertia (I)
Radius of Gyration (r)
Torsional Constant (J)
Nominal Weight

24	in
0.75	in
54.8	in ²
3705	in ⁴
8.22	in
7411	in ⁴
186.4	plf

Connection Data			
Splice			
Min.Splice Bolt Diameter (SC) by user:	Number of Splice Bolts (SB)		
	utomaticalaly design the bolt size. If the design the used in the output. Otherwise, the use	gned bolt's size is bigger than the user input s r input value will be used in the output.	ze, the
Gusset Plates	•		
(GB and GN) Min. Gusset Bolt Diameter	Min. Gusset Plate Thickness (GA and GM)		
Truss Connections			
Left Truss Bolt Diameter (LA)	Right Truss Bolt Diameter (RA)		
Number of Left Truss Bolts (LB)	Number of Right Truss Bolts (RB)		
Min. Horizontal Plate Thickness (LC, RC)	Min. Vertical Plate Thickness (LD,RD)		
Base Connection			
Left Anchor Bolt Diameter (BA)	Left Number of Anchor Bolts (BB)	Min. Base Plate Thickness (BC,CC)	
Right Anchor Bolts Diameter (CA)	Right Number of Anchor Bolts (CB)	Min. Stiffener Plate Thickness (BD,CD)	

Option 1 For Number Anchor 8, 16

Option 2 For Number Anchor 12

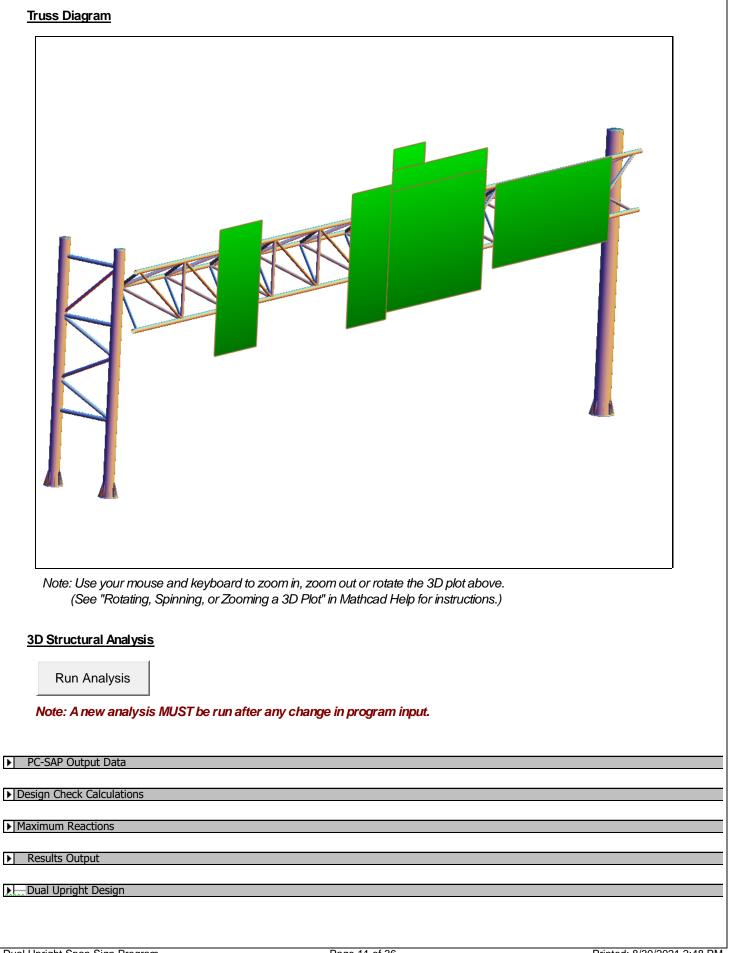

Foundation Data

Foundation Type

Drilled Shafts	
None	

Left Drilled Shaft Data

Soil Type	Sand Clay		
Soil Density, _{Ysoil}		52	pcf
Friction Angle, ϕ		33	deg
SPT Number (N _{blows})		16	
Shear Strength, c			ksf
Shaft Diameter (DB)		4.5	ft
Ground to Top of Shaft Offset		4	ft
Number of Stirrup Spaces (DD)		30	
Stirrup Spacing (DE)		6	in


Size of Longitudinal Bars (DC)

Right Drilled Shaft Data

Soil Type	Sand Clay		
Soil Density, _{Ysoil}		51	pcf
Friction Angle, ϕ		32	deg
SPT Number (N _{blows})		12	
Shear Strength, c			ksf
Shaft Diameter (FB)		4.5	ft
Ground to Top of Sha	lft Offset	4	ft
Number of Stirrup Spa	aces (FD)	30	
Stirrup Spacing (FE)		6	in

Save Data		
<u>Save Data F</u>	ile (optional)	
🔽 Use cu	rrent input file	
File Name	GGI-5 OHS-1_New Input Matrix.dat	Save Data
	Note: Select an output folder by using the "Change Folder" option above.	
Data Initializatio	n	
Geometry Check	Calculations	
Preliminary	Geometry Checks	
CheckLen	^{gt} TrussPanel = "OK"	
CheckClea	arance _{Wed} = "OK"	
CheckLay	^{out} SignPanel_ ⁼ "OK"	
CheckOve	erlap _{Panel} = "OK"	
Check _{DM}	<mark>s = "n/a"</mark>	
Check Bar	rierLength = "OK"	
2011		
► 3D Model Data		
► Wireframe Diagr	ram	
Design Forces		
Fatigue Forces		
▶ Total Forces		
▶ Truss Diagram D	Jata	

Ē	Results	v	wind = 170 · mph	
	Sign Structure Geometry			
(A)	$L_{Truss} = 94.26 ft$			
	H _{Left.Truss} = 23.79 ft			
(C)	H _{Right.Truss} = 28.15 ft			
(D)	#TrussPanels = "11 @ 8' 6	6-3/4" (To	otal_Length = 94.26 ft.)"	
(E)	D _{VerticalTruss} = 84 · in			
	$D_{HorzTruss} = 72.7461 \cdot in$			
	Sign Structure Members			
(F)	ChordMember = "6.625 O	.D. Pipe,	0.432" Wall""	CFI _{Chord} = "0.716 OK"
(G)	<i>WebMember</i> = "Angle 5 x	5 x 1/2"		<i>CFI_{Web}</i> = "0.624 OK"
(J)	UprightMember _{Right} = "24	" O.D. Pip	be, 0.750" Wall"	CFI _{RtUpright} = "0.788 OK
(K)	<i>Camber</i> = "1-1/4""			
	Left Upright Members			
(L)	BraceMember = "Angle 6 x	x 6 x 1"		CFI _{LtBrace} = "0.39 OK"
(H)	<i>UprightMember_{Left}</i> = "HSS	S 16 x 16	x 5/8"	CFI _{LtUpright} = "0.426 OK
				, .
	Left Upright Geometry	_		
(Y)	$Y_{Left.Dual.Upright} = 108$	· in		
(N)	PanelLeft.Dual.Upright =	3		
(X)	$X_{Left.Dual.Upright} = 3.76$			
(Z)	$Z_{\text{Left.Dual.Upright}} = 96 \cdot i$			
. /	Len.Duar.Opright			
	Additional Design Checks			
	CheckSlenderness _{Web} =		$\lambda_{web} = 10$	$^{\lambda}$ web.local.compact ⁼ 10.785
	CheckSlendernessChord =		$\lambda_{chord} = 16.493$	λ chord.local.compact = 48.333
	CheckSlenderness _{Brace} =		$\lambda_{brace} = 6$	λ brace.local.compact = 10.785
	CheckClassification.chord			al.buckling.chord = "Compact"
	Check _{Classification.web} =			al.buckling.web = "Compact"
	Check _{Classification.brace}		Section Classification.loca	al.buckling.brace = "Compact"
	CheckUprightSlenderness			
	Check _{Uprights} = "OK" CheckDeflection _{Upright} =	"OK"	MaxDeflection = 0.146∙in	Δ Limit := 2.5%·H _{Truss} = 0.178·in
	CheckRotationUpright = "C		MaxRotation = 0.063 deg	RotLimit := $1.67 \cdot deg$
	Check _{TrussDeflection} = "C			
	CheckSignHangers = "Wa		n panel(s) may require ad	ditional vertical hangers."
	Inright Span Sign Program			

Max. Reactions at Base of Left Upright

Front Upright

 $LongMomF_{Lt} = 141.833 \cdot kip \cdot ft$ $LongShearF_{Lt} = 22.430 \cdot kip$ $TransMomF_{Lt} = 83.500 \cdot kip \cdot ft$ $TransShearF_{Lt} = 8.265 \cdot kip$ $AxialF_{Lt} = 117.300 \cdot kip$ $TorqueF_{Lt} = 13.708 \cdot kip \cdot ft$

Max. Reactions at Base of Right Upright

 $LongMom_{Rt} = 1022.500 \cdot kip \cdot ft$ $LongShear_{Rt} = 39.050 \cdot kip$ $TransMom_{Rt} = 91.083 \cdot kip \cdot ft$ $TransShear_{Rt} = 8.272 \cdot kip$ $Axial_{Rt} = 20.350 \cdot kip$ $Torque_{Rt} = 15.875 \cdot kip \cdot ft$

Splice Calculations

Gusset Plate Calculations

Truss Connection Calculations

Base Plate Calculations

Anchor Bolts and Upright to Base Plate Connection Output Preparation

Anchor Bolts and Upright to Base Plate Connection Values

Note: Anchor bolts are ASTM F1554. All welds are sized assuming E70xx electrodes.

Left Base Connection

- (BA) $d_{LtAnchor} = "1-1/2"$ Dia."
- (BB) #AnchorLt = 16
- (BC) *t_{LtBase}* = "1-3/4""

(BD)
$$t_{LtStiff} = "1/2""$$

- (BE) $H_{LtStiff} = "1' 6-3/4""$
- (BF) Weld_{LtBaseInside} = "5/16""
- (BG) Weld_{LtBaseOutside} = "5/16""
- (BH) Weld_{LtStifftoBase} = "5/16""
- (BJ) $Weld_{LtStifftoUpright} = "5/16""$
- (*BK*) *BKa* = "4' 0""
- (BM) BMa = "6-1/8"" · in
- (BN) EdgeLa = "4-15/16"" · in
- (*BP*) *EdgeXa* = "3-1/2"" · *in*

Additional Base Connection Checks

CheckThicknessRatioLtStiff.to.Upright = "OK"

CheckWeldSizeLimit_{LtBaseUpright.in} = "OK"

CheckWeldSizeLimit_{LtBaseUpright.out} = "OK"

CheckWeldSizeLimitLtStiffBase = "OK"

CheckWeldSizeLimit_{LtStiffUpright} = "OK"

CheckSpacingLtHStiffBrace = "OK"

CheckSpacing_{LtStiff} = "OK"

Connection Output

Connection Values

Note: All truss bolted connections use A325 bolts, and upright anchor bolts are ASTM F1554. All welds are sized assuming E70xx electrodes.

Splice Connection

- (SA) Size_{Angle} = "Angle 6" x 6" x 1/2""
- (SB) #Bolts_{Regd.in.Splice} = "6"
- (SC) *d*_{BoltRegd.for.Splice} = "1-1/4" Dia."

```
CheckSpacing = "OK"
```

```
CheckBolt<sub>Splice</sub> = "OK"
```

Alternate Flange Splice Connection

- (PA) *t_{Flange}* = "1-1/2""
- (PB) Offset_{Bolt} = "2""
- (PC) *Weld*_{Inside} = "3/8""
- (PD) *Weld*_{Outside} = "7/16""
- (PE) *d_{Bolt}* = "1""
- (PF) #Bolts = "12"

Gusset Plates

```
(GA) t_{GUS} = "3/4""
```

- (GB) $d_{GusBolt} = "1"$ Dia."
- (GC) *LBackChordGus* = "1' 6-1/2""
- (GD) H_{BackChordGus} = "9-1/4""
- (GE) *LFrontChordGus* = "1' 6-1/4""
- (GF) *H*_{Front}ChordGus = "8""
- (GG) *L_{CenterFrontGus}* = "2' 5-3/4""
- (GH) LBackTrussEnd = "2' 0""
- (GJ) $H_{BackTrussEnd} = "11-3/4""$
- (GK) $L_{FrontTrussEnd} = "1' 4-1/4""$
- (GL) Weld_{Gusset.}To.Chord = "3/16""

CheckThickness_{Gusset} = "OK"

Brace Gusset Plates

Left Truss Connection

- (LA) $d_{LtBolt} = "7/8"$ Dia."
- (LB) $#Bolts_{Lt} = "6"$
- (LC) $t_{LtHorzConnPL} = "1/2""$
- (LD) *t_{LtVertConnPL} = "5/8""*
- (LE) Weld_{LtHorz}PLtoUpright = "3/16""
- (LF) Weld_{LtVertPLtoUpright} = "1/4""
- (LG) Weld_{LtConnPLtoChord} = "3/16""
- (LH) Weld_{LtVertPLtoHorzPL} = "3/16""

Additional Left Truss Connection Checks

- CheckBolt_{LtTruss.Alter} = "OK"
- CheckBolt_{LtTruss} = "OK"
- CheckThicknessLtHorz.Plate = "OK"
- CheckThicknessLtVert.Plate = "OK"
- CheckThicknessLtConn.Plate = "OK"
- CheckThickness_{LtHorz.Vert} = "OK"
- Check_{LtHorzPL} = "OK"
- Check_{LtVertPL} = "OK"
- Check_{LtUpright} = "OK"

Right Truss Connection

- (RA) $d_{RtBolt} = "7/8"$ Dia."
- (RB) #Bolts_{Rt} = "6"
- (RC) $t_{RtHorzConnPL} = "1/2""$
- (RD) *t_{RtVertConnPL}* = "1/2""
- (RE) Weld_{RtHorz}PLtoUpright = "3/16""
- (RF) Weld_{Rt}VertPLtoUpright = "3/16""
- (RG) Weld_{RtConnPLtoChord} = "3/16""
- (RH) Weld_{Rt}VertPLtoHorzPL = "3/16""

Additional Right Truss Connection Checks

CheckBolt_{RtTruss.Alter} = "OK"

CheckBolt_{RtTruss} = "OK"

CheckThickness_{RtHorz.Plate} = "OK"

CheckThickness_{RtVert.Plate} = "OK"

CheckThickness_{RtConn.Plate} = "OK"

CheckThickness_{RtHorz.Vert} = "OK"

Check_{RtHorzPL} = "OK"

Check_{RtVertPL} = "OK"

Check_{RtUpright} = "OK"

Left Base Connection

- (BA) *d_{LtAnchor}* = "1-1/2" Dia."
- (BB) #AnchorLt = 16
- (BC) *t_{LtBase}* = "1-3/4""
- (BD) $t_{LtStiff} = "1/2""$
- (BE) $H_{LtStiff} = "1' 6-3/4""$
- (BF) Weld_{LtBaseInside} = "5/16""
- (BG) Weld_{LtBaseOutside} = "5/16""
- (BH) Weld_{LtStifftoBase} = "5/16""
- (BJ) Weld_{Lt}StifftoUpright = "5/16""

Right Base Connection

- (CA) d_{RtAnchor} = "2" Dia."
- (CB) #AnchorRt = 16
- (CC) *t_{RtBase}* = "1-3/4""
- (CD) *t_{RtStiff}* = "1/2""
- (CE) H_{RtStiff} = "2' 2-1/4""
- (CF) Weld_{RtBaseInside} = "5/16""
- (CG) Weld_{RtBaseOutside} = "5/16""
- (CH) Weld_{RtStifftoBase} = "5/16""
- (CJ) Weld_{Rt}StifftoUpright = "3/16""

Additional Base Connection Checks

CheckEdgeL_{LtAnchor} = "OK"

CheckSpaceL_{LtAnchor} = "OK"

CheckThicknessRatioLtStiff.to.Upright = "OK"
CheckThicknessRatio _{RtStiff.to.Upright} = "OK"
CheckWeldSizeLimit _{LtB} aseUpright.in = "OK"
CheckWeldSizeLimit _{LtB} aseUpright.out ⁼ "OK"
CheckWeldSizeLimit _{RtBase} Upright.in ⁼ "OK"
CheckWeldSizeLimit _{RtBaseUpright.out} = "OK"
CheckWeldSizeLimit _{LtStiffBase} = "OK"
CheckWeldSizeLimit _{RtStiffBase} = "OK"
CheckWeldSizeLimit _{LtStiffUpright} = "OK"
CheckWeldSizeLimit _{RtStiffUpright} = "OK"

CheckSpacing_{LtStiff} = "OK"

CheckSpacing_{RtStiff} = "OK"

Fatigue Calculations

Fatigue Design Checks

Left Base Connection

CheckFatigue_{LtUpright} = "OK (0.94 ksi < 7 ksi)" CheckFatigue_{LtBase} = "OK (0.34 ksi < 10 ksi)" CheckFatigue_{LtAnchor} = "OK (0.34 ksi < 7 ksi)"

Right Base Connection

CheckFatigue_{RtUpright} = "OK (3.09 ksi < 7 ksi)" CheckFatigue_{RtBase} = "OK (1.55 ksi < 10 ksi)" CheckFatigue_{RtAnchor} = "OK (0.17 ksi < 7 ksi)"

Chord Member Connections

CheckFatigue_{ChordSplice} = "OK (2.13 ksi < 7 ksi)" CheckFatigue_{ChordSlot} = "OK (0.27 ksi < 2.6 ksi)" CheckFatigue_{HalfChord} = "OK (0.2 ksi < 2.6 ksi)" CheckFatigue_{LtTrussBolt} = "OK (0.16 ksi < 7 ksi)" CheckFatigue_{RtTrussBolt} = "OK (0.16 ksi < 7 ksi)"

Web Gusset Plates

CheckFatigue_{BackPlate} = "OK (0.06 ksi < 1.2 ksi)" CheckFatigue_{BackEndPlate} = "OK (0.16 ksi < 1.2 ksi)" CheckFatigue_{FrontPlate} = "OK (0.12 ksi < 1.2 ksi)" CheckFatigue_{FrontEndPlate} = "OK (0.12 ksi < 1.2 ksi)" CheckFatigue_{TopCenterPlate} = "OK (0.1 ksi < 1.2 ksi)" CheckFatigue_{BotCenterPlate} = "OK (0.11 ksi < 1.2 ksi)"

Web Members

CheckFatigue_{Web} = "OK (0.8 ksi < 7 ksi)"

Brace Gusset Plates

CheckFatigue_{BraceOne} = "OK (0.44 ksi < 1.2 ksi)" CheckFatigue_{BraceTwo} = "OK (0.14 ksi < 1.2 ksi)" CheckFatigue_{BraceTwoSlant} = "OK (0.13 ksi < 1.2 ksi)" CheckFatigue_{BraceThree} = "OK (0.1 ksi < 1.2 ksi)" for Detail BA for Detail BB & BE for Detail BD for Detail BC

Brace Members

CheckFatigue_{Brace} = "OK (0.49 ksi < 7 ksi)"

Drilled Shaft Calculations

Anchor Bolt Calculation and Median Barrier Check Calculations

Reinforcing Steel Bar List

Quantity Calculations for Median Barrier

Drilled Shaft Design

Left Drilled Shaft Design Checks

Check_{LtMassConcrete} = "OK"

CheckSpacing_{LtLongReinf} = "OK"

CheckCapacityLtLongReinf = "OK"

CheckShearTorsionComb_{1 t} = "OK"

CheckMaxSpacing_{LtStirrup} = "OK"

CheckInterFaceStrength = "OK"

Left Drilled Shaft Dimensions/Reinforcing

- (DA) $L_{LtShaft} = 26.0 \, ft$
- (DB) $D_{LtShaft} = 4.5 ft$
- (DC) *d_{LtLongReinf}* = "15 No. 11 bars evenly spaced"
- (DD) #Spaces_{LtStirrup} = 30
- (DE) $Spacing_{LtShearStirrup} = 6.00 \cdot in$

Right Drilled Shaft Design Checks

```
Check<sub>RtMassConcrete</sub> = "OK"
```

```
CheckSpacing<sub>RtLongReinf</sub> = "OK"
```

CheckCapacity_{RtLongReinf} = "OK"

CheckShearTorsionComb_{Rt} = "OK"

CheckMaxSpacing_{RtStirrup} = "OK"

Right Drilled Shaft Dimensions/Reinforcing

- (FA) $L_{RtShaft} = 25.0 ft$
- (FB) $D_{RtShaft} = 4.5 ft$
- (FC) *d_{RtLongReinf}* = "15 No. 11 bars evenly spaced"
- (FD) #Spaces_{RtStirrup} = 30
- (FE) Spacing_{RtShearStirrup} = $6.00 \cdot in$

Anchor Bolt Design

Anchor Bolt Lengths

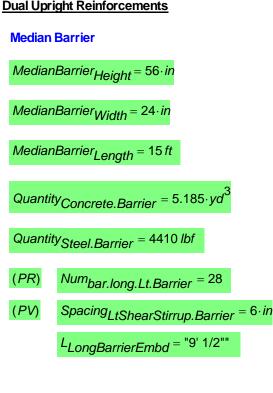
- (DF) $L_{embedment.anchorB} = 30 \cdot in$
- (FF) $L_{RtAnchorEmbed} = 58 \cdot in$

Additional Anchor Bolt Checks

CheckCapacity_{LtAnchor} = "OK"

CheckBreakout_{LtAnchor} = "OK"

Check_{NoNeedBearingPlate} = "OK"


CheckCapacity_{RtAnchor} = "OK"

CheckBreakout_{RtAnchor} = "OK"

 $ClearSpacing_{bar.to.bar.right} = 6.8 \cdot in$

ClearSpacing_{bar.to.bolt.right} = 1.115 · in

Dual Upright Reinforcements

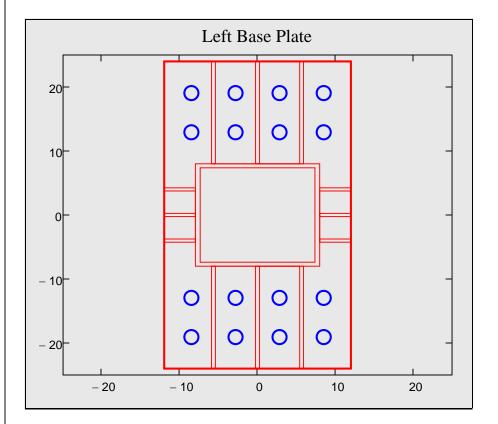
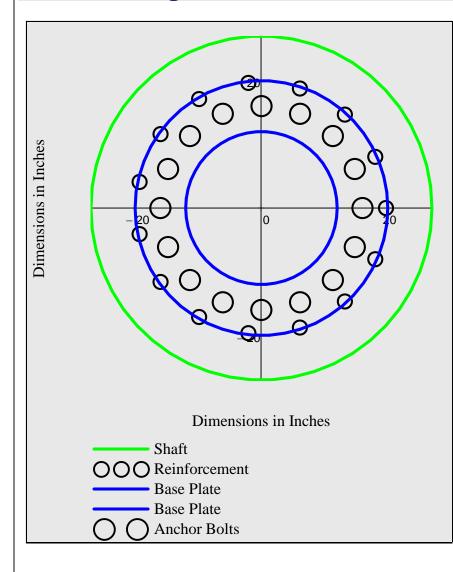
should be ~6" for concrete to flow from inside to outside of the drilled shaft reinforcing cage

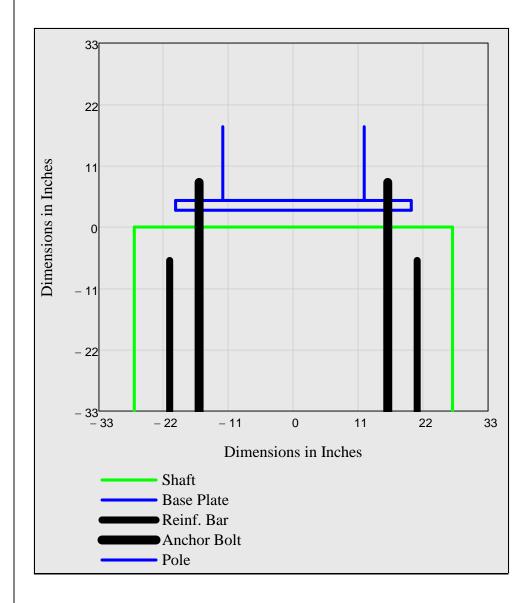
should be ~1.5" for anchorage placement inside the drilled shaft reinforcement cage

MicroStation Data			
Create Mi	croStation Text File		
Use s	ame name as current data file		
File Name	GGI-5 OHS-1_New Input Matrix.txt	Create MicroStation File	
	ation Table Directions		
	n the text menu and select "TableData" on the menu. Thi ement in the table.	s sets the text font for correct	
	n the key-in dialog box and type in "include" and then add	d the full path to the text file.	
3. Plac	e the text using the text node provided in the Table. Som		
nec	essary to center the text.		
Export Da	ta to Excel Files for Microstation		
	Export Data		
Note:	A new analysis MUST be run after any change in program in	but.	
<u>Microstat</u>	ion Excel Tables Directions		
	ot delete the original excel files in the folder.		
 Always close the excel files to keep the latest update per sign structure. The Mathcad output is per structure. For multiple structures manually create another excel 			
file.			
 To import the excel tables to Microstation use the Linked Data Manager (LDM) application. For more information refer to FDOT CAD Manual. 			
1011			
Excel Data	Link Data Manager)		
Disclaimer			
• •	program, you are agreeing in the following disclaimer: <i>No warra</i>		
	artment of Transportation and by the developers as to the accura duce, nor shall the fact of distribution constitute any such warrant		
	Department of Transportation and by the developers in any conne		

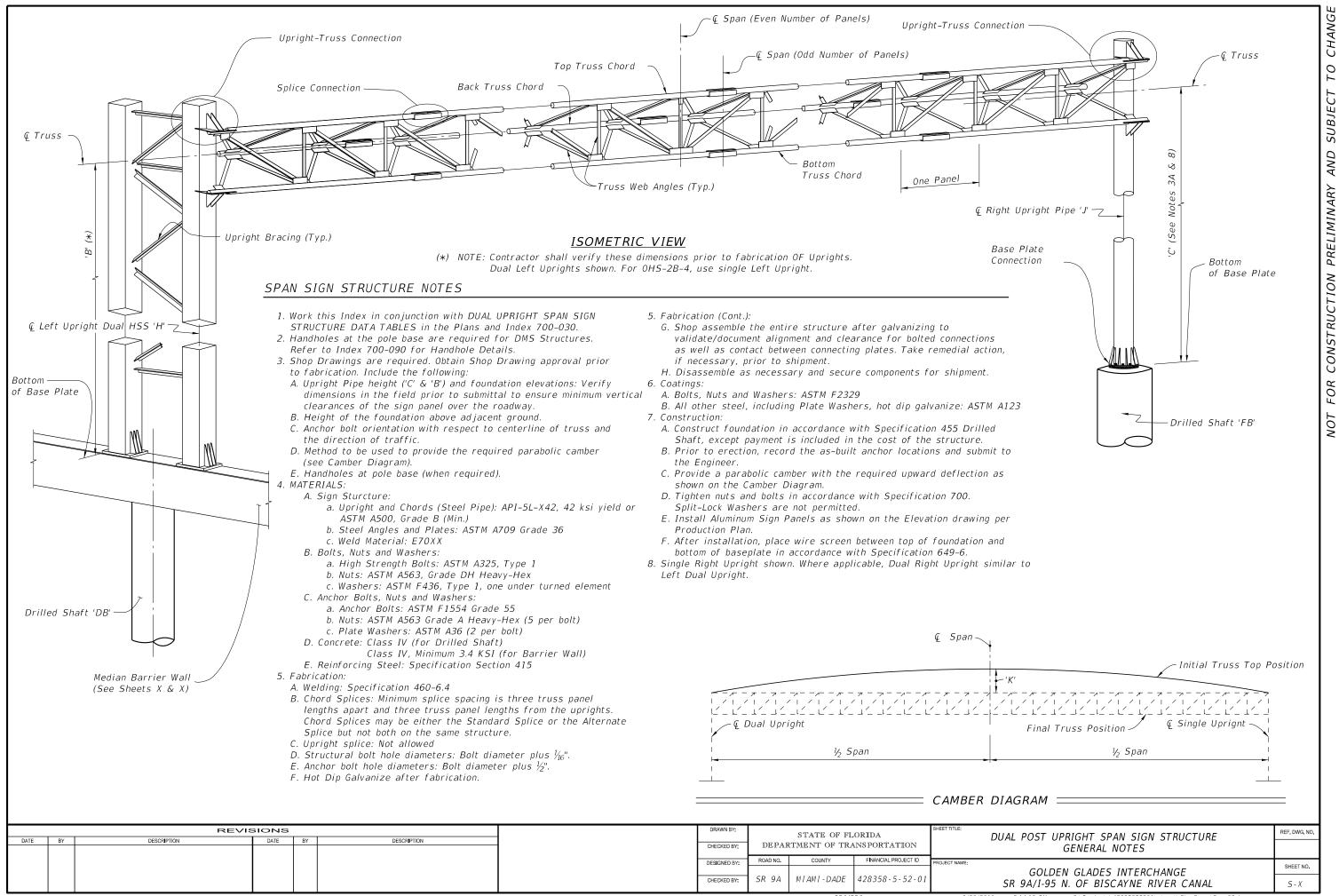
Plan View - Left Upright - Base Plate & Anchor Bolts

Coordinates for Drawings

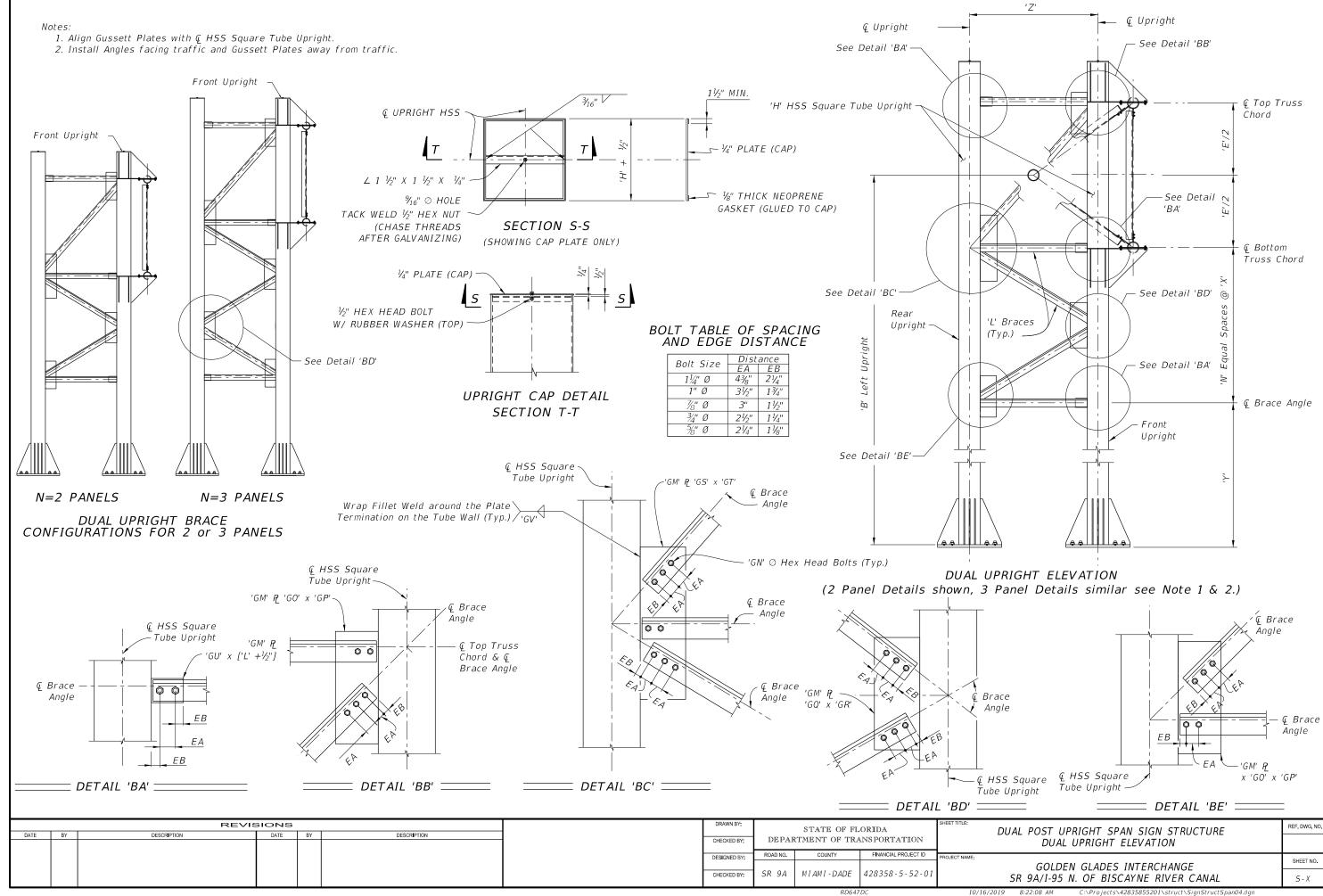

Diagram:Anchor Bolts and Stiffener Plates
Layouts at Base Plate. $BK = 48 \cdot in$
 $BM = 6.125 \cdot in$
 $BN = 4.938 \cdot in$
 $BP = 3.5 \cdot in$
 $D_{Left. Upright} = 16 \cdot in$
 $Bolt_{EquallySpacing} = 5.667 \cdot in$
 $t_{LtStiffener} = 0.5 \cdot in$
#AnchorLt = 16
 $D_{LtAnchor} = 1.5 \cdot in$
 $D_{Anchor.NutC}(D_{LtAnchor}) = 2.75 \cdot in$

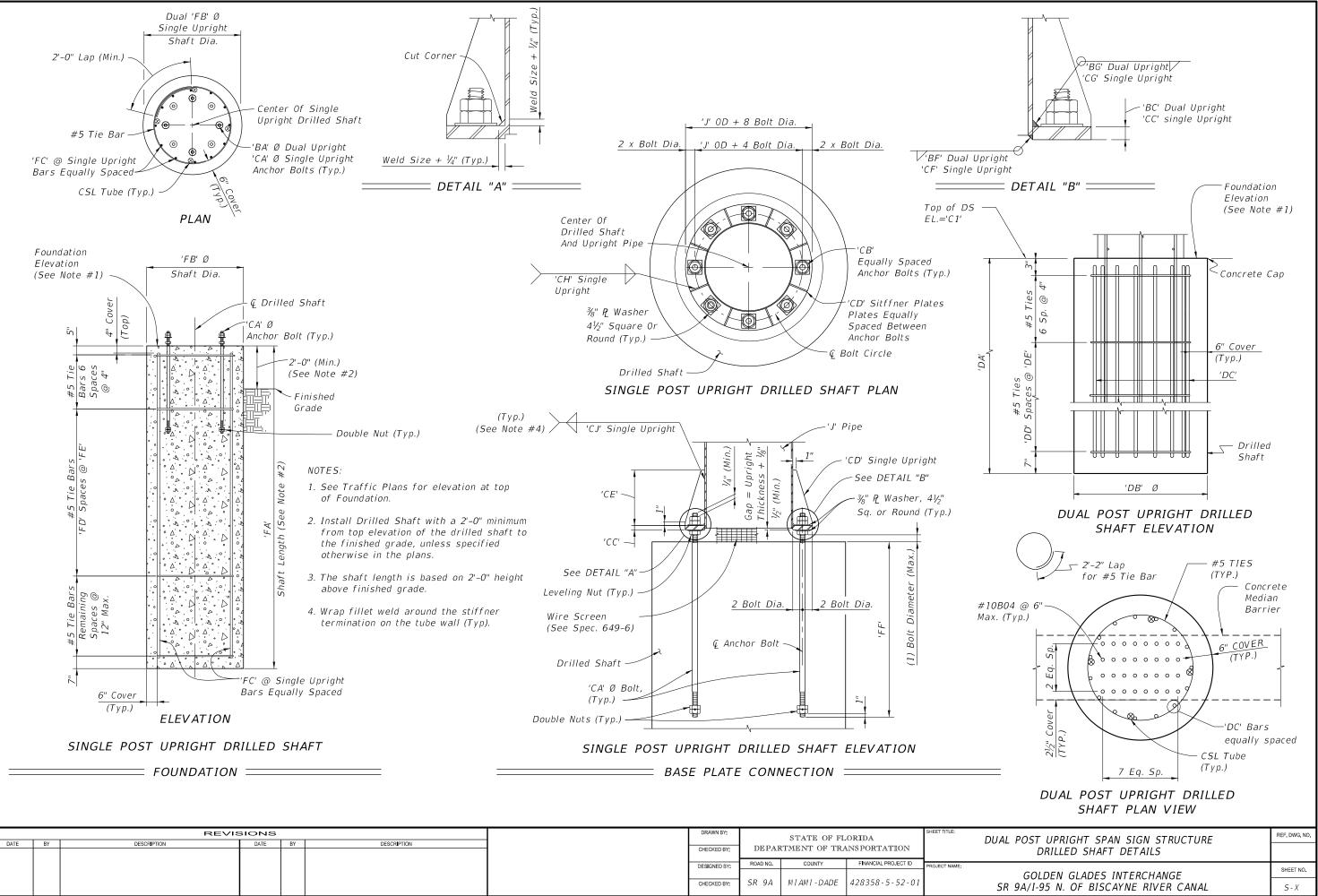
Plan View - <u>Right</u> Drilled Shaft, Base Plate, Anchor Bolts, & Reinforcing Steel

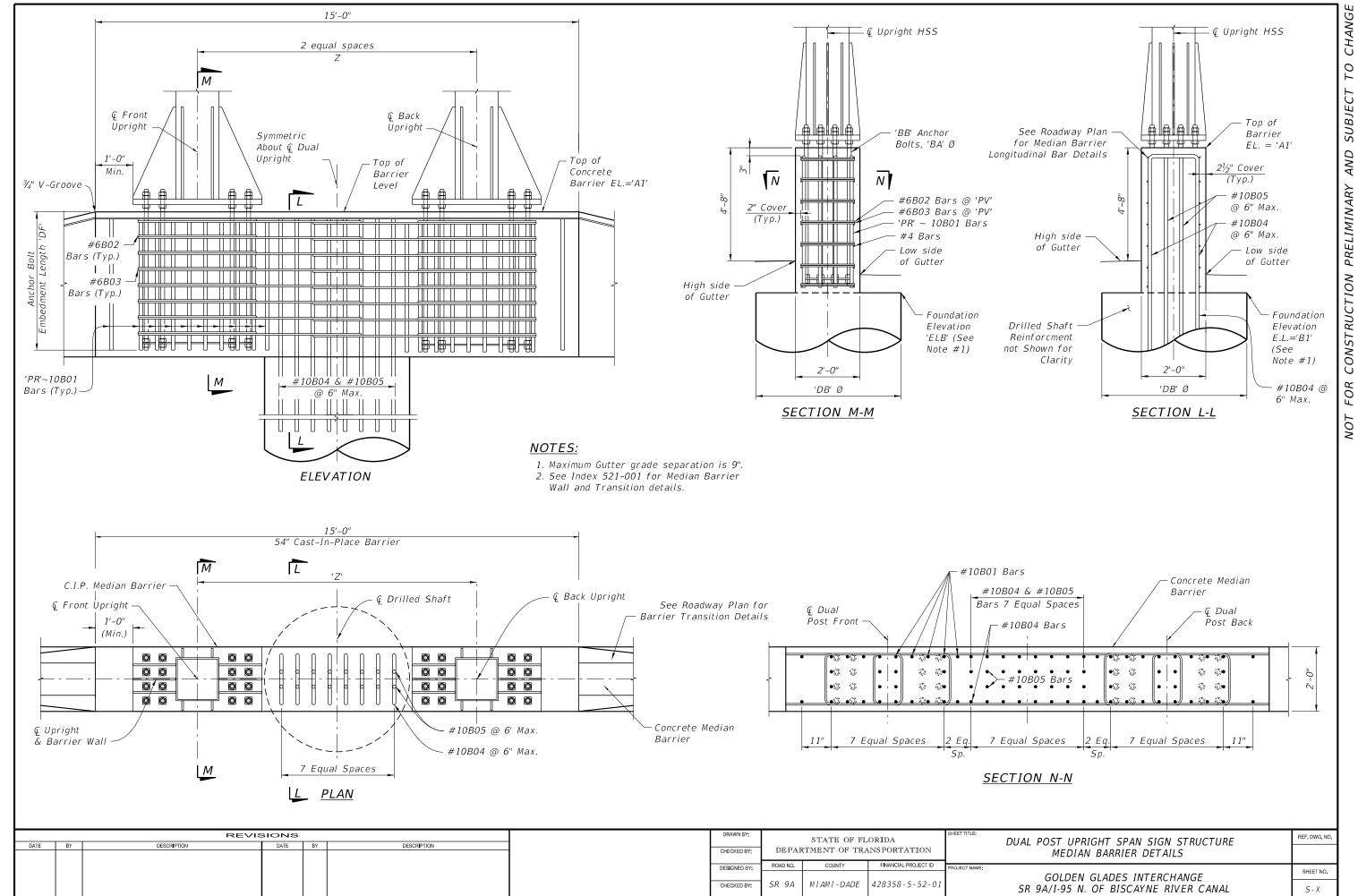


Diameter_{base.pole} = $24 \cdot in$ Diameter_{baseplate.pole} = $40 \cdot in$ Diameter_{shaft} = $54 \cdot in$ Diameter_{boltcircle.pole} = $32 \cdot in$ Diameter_{rebar.circle} = $39.48 \cdot in$ #AnchorRods = 16#BarsProvided = 15ClearSpacing_{bar.to.bar.right} = $6.8 \cdot in$ ClearSpacing_{bar.to.bar.right} = $1.115 \cdot in$

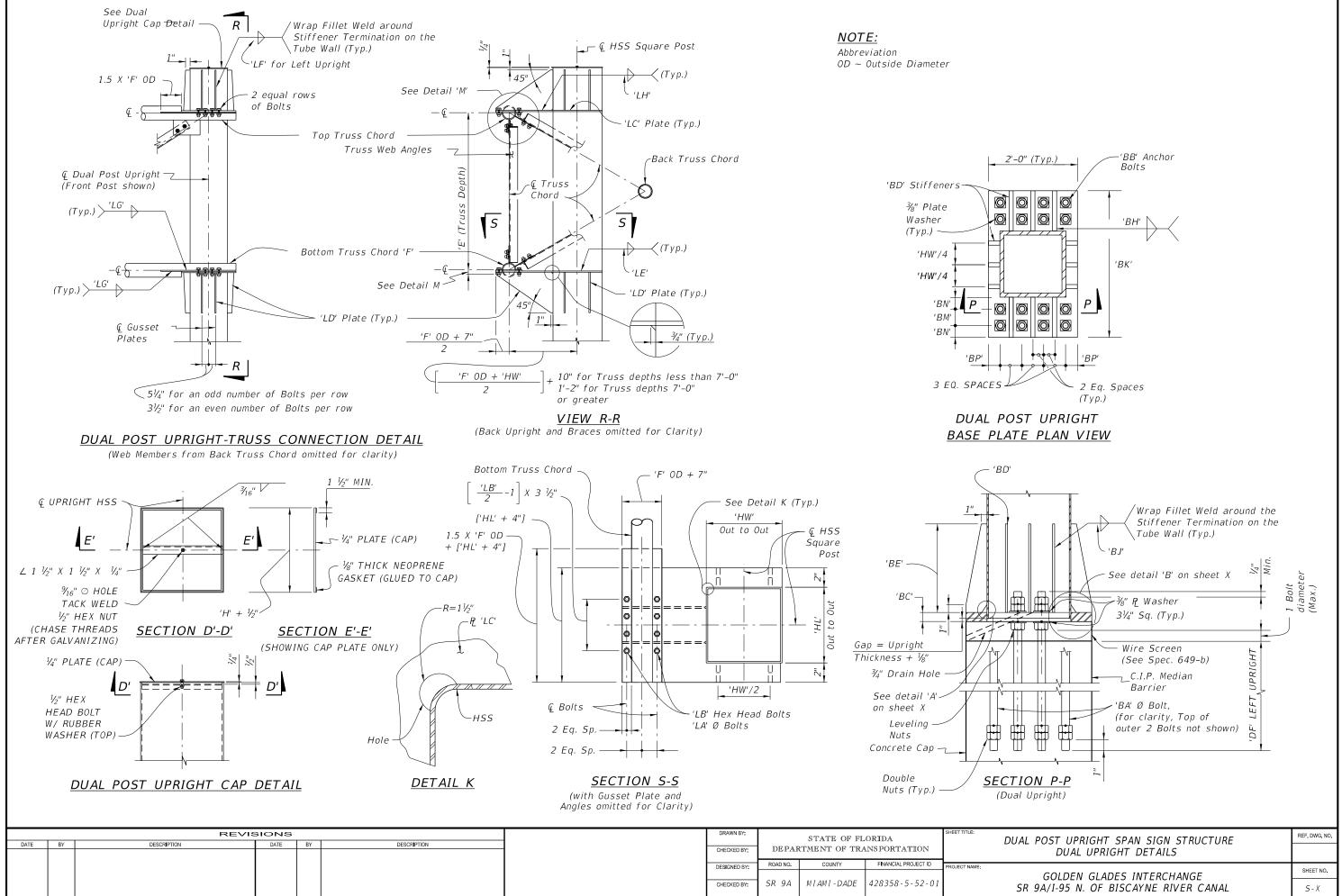
Elevation View - <u>Right</u> Drilled Shaft, Base Plate, Anchor Bolts, & Reinforcing Steel



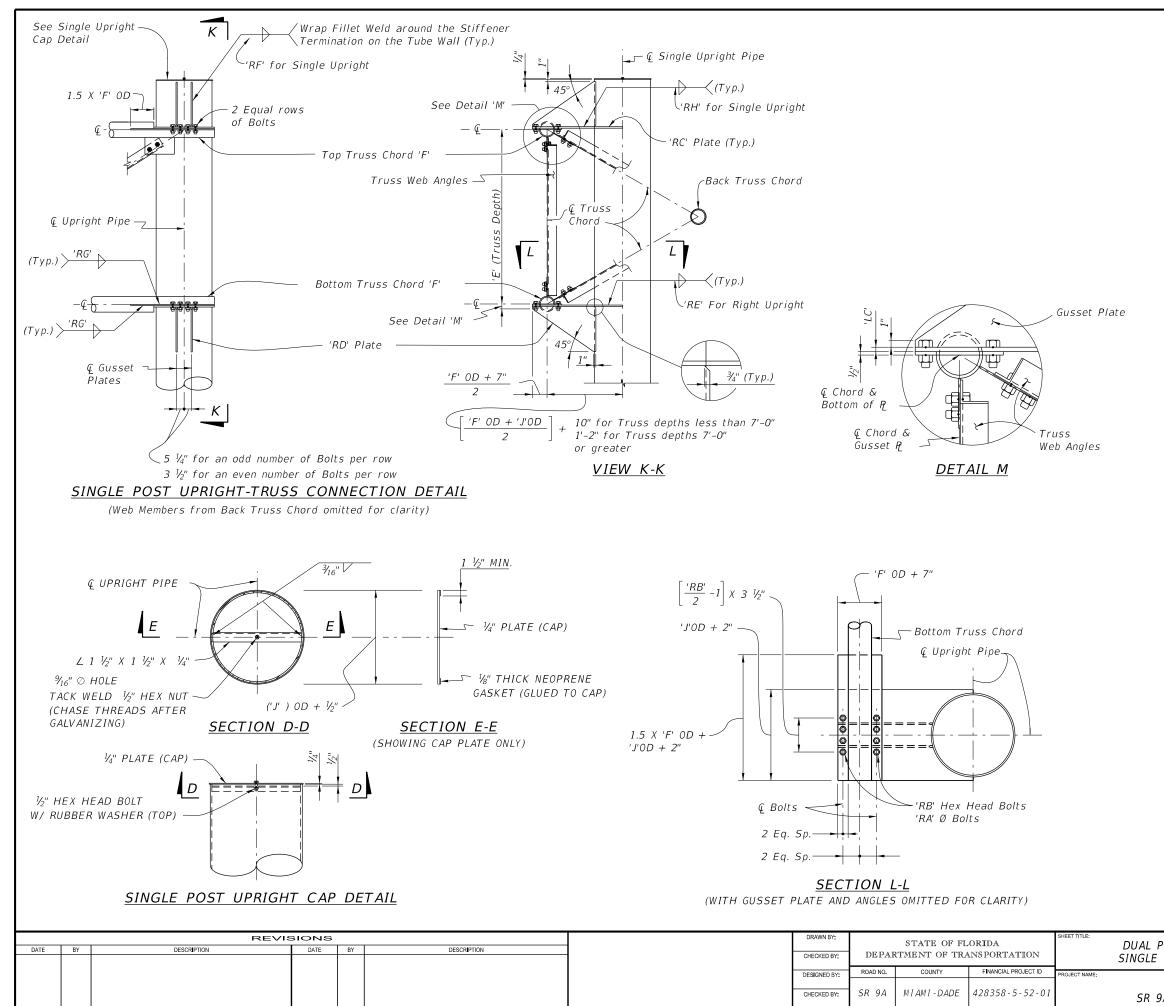

Diameter_{base.pole} = $24 \cdot in$ Diameter_{baseplate.pole} = $40 \cdot in$ $t_{baseplate.pole} = 1.75 \cdot in$ Diameter_{shaft} = $4.5 \cdot ft$ Diameter_{boltcircle.pole} = $32 \cdot in$ Diameter_{rebar.circle} = $39.5 \cdot in$


8/20/2019 2:14:1

PM C:\Projects\42835855201\struct\SignStructSpan03.dg

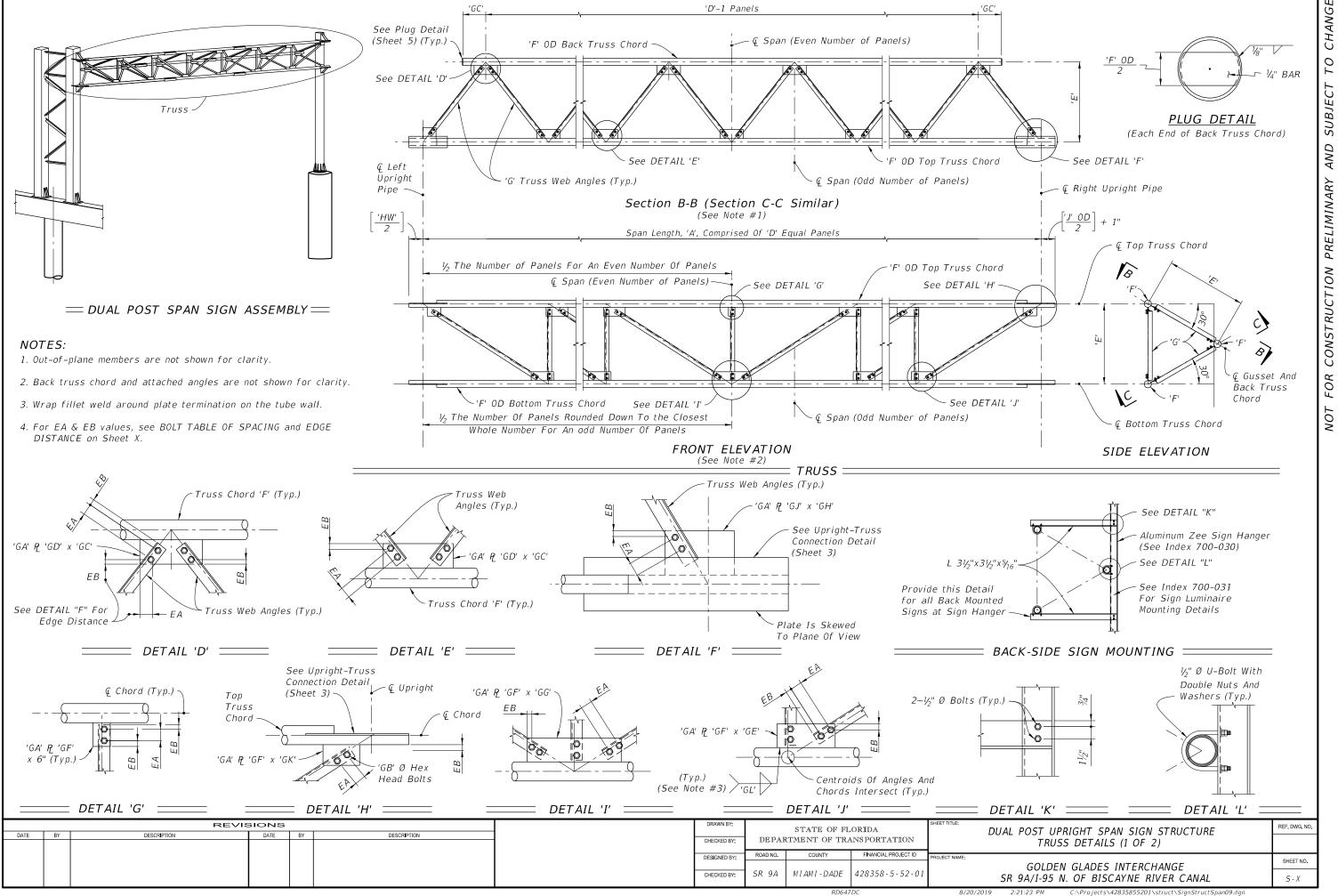


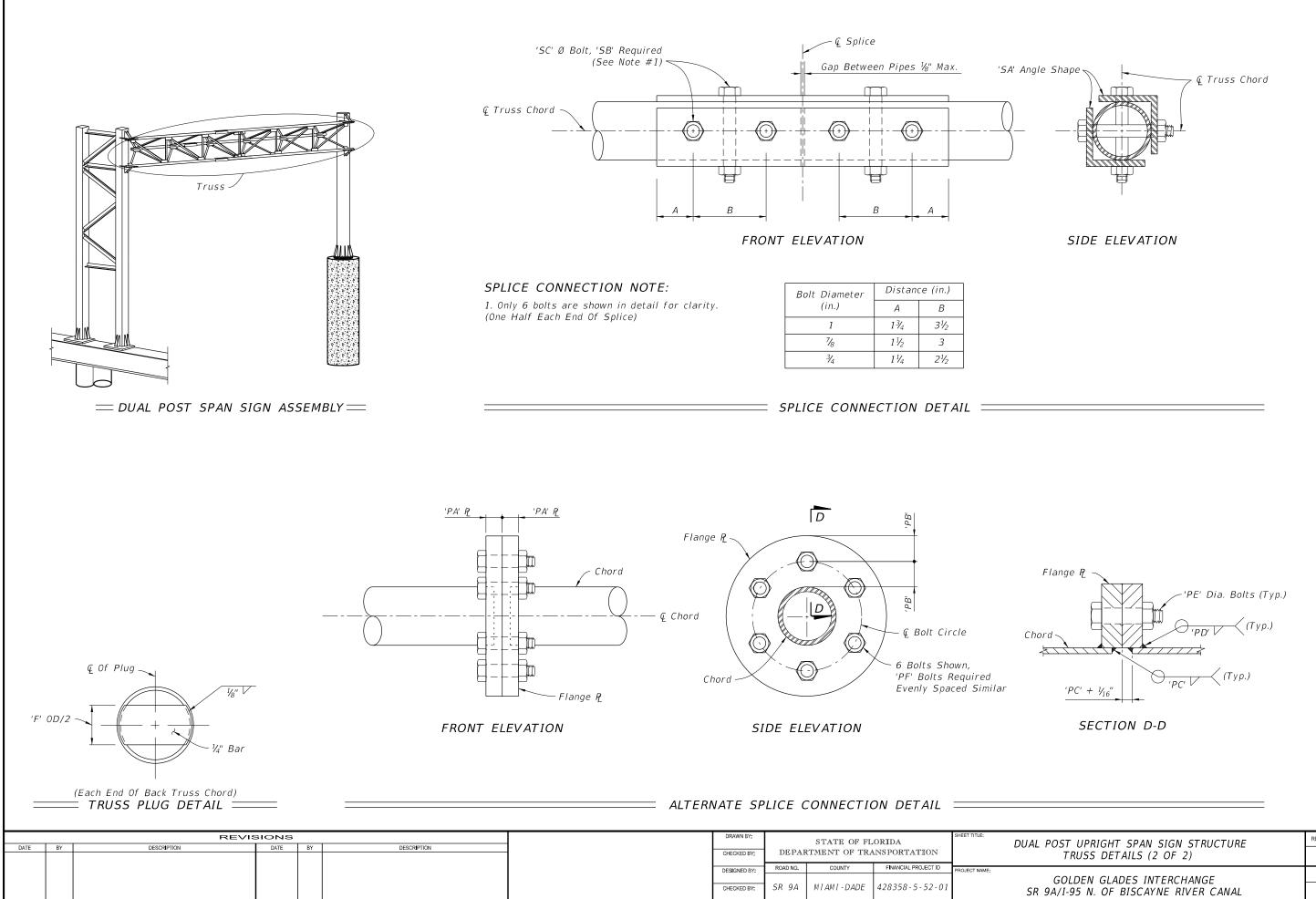
7 PM C:\Projects\42835855201\struct\SignStructSpan05.dgn



D647DC 8/20/2019 2:1

9 PM C:\Projects\42835855201\struct\SignStructSpan06.dgn




10/16/2019 8:3

10/16/2019 8:41:06 AM C:\Projects\42835855201\struct\SignStructSpan08.dgn

POST UPRIGHT SPAN SIGN STRUCTURE	REF. DWG. NO.
UPRIGHT TRUSS-CONNECTION DETAILS	
GOLDEN GLADES INTERCHANGE	SHEET NO.
9A/I-95 N. OF BISCAYNE RIVER CANAL	S - X

POST UPRIGHT SPAN SIGN STRUCTURE	REF. DWG. NO.
TRUSS DETAILS (2 OF 2)	
GOLDEN GLADES INTERCHANGE	SHEET NO.
9A/I-95 N. OF BISCAYNE RIVER CANAL	S - X

							DUAL POST UPRIGH	HT SPAN SIGN ST	RUCTURES DATA TABLE				
			DIMENSIONS		PNLS			М	EMBER SIZES			SPLICE	
SIGN #	STATION	А	В	С	D	Ε	F (CHORD)	G (WEB)	H (LEFT UPRIGHT)	J (RIGHT UPRIGHT)	K (CAMBER)	SA	SB SC
		ft	ft	ft	#	in	0. D. x Wall Thk. (in)	Angle (in)	HL x HW x Thk. (in)	0. D. x Thk. (in)	in	Angle (in)	# ir
0HS-1-2	267+00.083	138.2500	23.1800	27.0300	13	108	8.63 x 0.500	6 x 6 x 1	2-HSS 16 x 16 x 0.500	36.00 x 0.625	3-3/4	8 x 8 x 1/2	8 1-1
0HS-1	28+26.000	94.2600	23.7900	28.1500	11	84	6.63 x 0.432	5 x 5 x 1/2	2-HSS 16 x 16 x 0.625	24.00 x 0.750	1-1/4	6 x 6 x 1/2	6 1-1
0HS-2	36+10.000	88.2400	23.6000	28.2000	11	84	6.63 x 0.432	4 x 4 x 1/2	2-HSS 12 x 12 x 0.625	24.00 x 0.750	1-1/4	6 x 6 x 1/2	6 1-1
0HS-3	6571+33.000	82.0000	28.1500	27.0400	10	84	5.56 x 0.375	4 x 4 x 1/2	2-HSS 16 x 16 x 0.625	24.00 x 0.750	3/4	5 x 5 x 1/2	6 7/
0HS-5	46+15.500	95.0500	28.1500	20.8400	10	84	6.63 x 0.432	4 x 4 x 1/2	2-HSS 12 x 12 x 0.625	24.00 x 0.750	1-1/2	6 x 6 x 1/2	8 1-1

					DUA	LP	OST U	PRIGH	'T	SPAN S	IG	N STRU	JCT	URES I	DA	TA TAB	LE	(CONT.,)						
		AL	TERNATE	SPLICE											(GUSSET PL	ATI								
SIGN #	PA	PΒ	РС	PD	PE	PF	GA	GB		GC		GD		GE		GF		GG		GH		GJ		GK	GL
	in	in	in	in	in	#	in	in	ft	in	ft	in	ft	in	ft	in	ft	in	ft	in	ft	in	ft	in	in
0HS-1-2	2	3-1/4	7/16	1/2	1-1/2	11	1-1/16	1-1/4	1	10-1/4	0	11-1/4	1	9-1/2	0	9-1/2	2	11-1/4	2	1-3/4	1	2	1	4-1/2	1/4
0HS-1	1-1/2	2	3/8	7/16	1	12	3/4	1	1	6-1/2	0	9-1/4	1	6-1/4	0	8	2	5-3/4	2	0	0	11-3/4	1	4-1/4	3/16
0HS-2	1-1/2	2	3/8	7/16	1	12	1/2	1	1	4-3/4	0	8-3/4	1	4-1/4	0	7-1/2	2	2-1/2	1	10-3/4	0	10-1/4	1	2-1/2	3/16
0HS-3	1-3/8	2	5/16	3/8	1	9	1/2	7/8	1	3-1/4	0	7 <i>-3/4</i>	1	2-3/4	0	6-3/4	2	0	1	8-3/4	0	9-3/4	1	1/4	3/16
0HS-5	1-1/2	2	3/8	7/16	1	12	1/2	7/8	1	5-1/2	0	8	1	4-3/4	0	6-1/2	2	4	1	8-3/4	0	9	1	0	3/16

			DUAL	POST (UPRIGH	HT SPA	AN SIG	N STR	υςτυι	RES	DATA	TABL	E (CON	Т.)		
	LEFT UPRIGHT CONNECTION											GHT UPRI	GHT CON	NECTION		
SIGN #	LA	LB	LC	LD	LE	LF	LG	LH	RA	RB	RC	RD	RE	RF	RG	RH
	in	#	in	in	in	in	in	in	in	#	in	in	in	in	in	in
0HS-1-2	7/8	6	1/2	3/4	3/16	3/16	3/16	3/16	7/8	6	1/2	1/2	3/16	5/16	3/16	3/16
0HS-1	7/8	6	1/2	5/8	3/16	1/4	3/16	3/16	7/8	6	1/2	1/2	3/16	3/16	3/16	3/16
0HS-2	7/8	6	1/2	5/8	3/16	1/4	3/16	3/16	7/8	6	1/2	1/2	3/16	3/16	3/16	3/16
0HS-3	7/8	6	1/2	5/8	3/16	1/4	3/16	3/16	7/8	6	1/2	1/2	3/16	3/16	3/16	3/16
0HS-5	7/8	6	1/2	5/8	3/16	1/4	3/16	3/16	7/8	6	1/2	1/2	3/16	3/16	3/16	3/16

				l	DU	AL POS	T UPRI	GHT SI	PAN SI	GN STF	RUCTUR	RES	DATA TA	BLE (201	NT.)				
				LEF	ΓT	BASE CONN	VECTION							RIGH	IT E	BASE CONN	IECTION			
SIGN #	BA	BB	BC	BD		BE	E BF BG BH BJ				CA	СВ	СС	CD		CE	CF	CG	СН	СJ
	in	#	in	in	ft	in	in	in	in	in	in	#	in	in	ft	in	in	in	in	in
0HS-1-2	1	16	1-1/2	1/2	1	0	5/16	5/16	7/16	1/4	2-1/2	12	1-1/2	1/2	2	9-3/4	5/16	5/16	3/8	3/16
0HS-1	1-1/2	16	1-3/4	1/2	1	6-3/4	5/16	5/16	5/16	5/16	2	16	1-3/4	1/2	2	2-1/4	5/16	5/16	5/16	3/16
0HS-2	2-1/2	12	1-3/4	1/2	2	9-1/2	5/16	5/16	5/16	5/16	2	16	1-3/4	1/2	2	2-1/4	5/16	5/16	5/16	3/16
0HS-3	1-3/4	8	1-3/4	1/2	1	10-1/2	5/16	5/16	5/16	5/16	1-3/4	14	1-3/4	1/2	1	10-1/2	5/16	5/16	5/16	3/16
0HS-5	2-1/2	12	1-3/4	1/2	2	9-1/2	5/16	5/16	5/16	5/16	2	14	1-3/4	1/2	2	2-1/4	5/16	5/16	5/16	3/16

			Dυ	AL POS	t upright s	SPAN	I SIGI	N STR	UCT	TURES I	DAT	TA TABL	E (CONT.)			
				LEFT I	DRILLED SHAFT							RIGHT	DRILLED SHAFT			
SIGN #		DA		DB	DC	DD	DE	DF		FA		FB	FC	FD	FE	FF
	ft	in	ft	in	# / size	#	in	in	ft	in	ft	in	# / size	#	in	in
0HS-1-2	28	0	5	0	19 / 11	4	9	41	26	0	5	3	20 / 11	4	9	55
0HS-1	26	0	4	6	15 / 11	30	6	30	25	0	4	6	15 / 11	30	6	58
0HS-2	28	0	4	6	15 / 11	30	6	50	25	0	4	6	15 / 11	30	6	58
0HS-3	26	0	5	0	19 / 11	30	6	35	21	0	5	0	19 / 11	30	6	39
0HS-5	24	0	4	6	15 / 11	30	6	50	24	6	4	6	15 / 11	30	6	52

		REVIS	BIONS	6	DRAWN BY:		STATE OF FI	LORIDA	SHEET TITLE:	DUAL DOCT UDDICHT CDAN CICN CTDUCTUD		
DATE	BY	DESCRIPTION	DATE	BY DESCRIPTION	CHECKED BY:					DEPARTMENT OF TRANSPORTATION		DUAL POST UPRIGHT SPAN SIGN STRUCTURE DATA TABLE (1 OF 2)
					DESIGNED BY:	ROAD NO.	COUNTY	FINANCIAL PROJECT ID	PROJECT NAME:			
					CHECKED BY:	SR 9A	MIAMI-DADE	428358-5-52-01		GOLDEN GLADES INTERCHANGE SR 9A/I-95 N. OF BISCAYNE RIVER CANAL		

NOTES:

1.

2.

Design Wind Speed = 170 mph Upright wall thickness given is a minimum dimension. З. Erection is the Contractor's responsibility. To facilitate erection, the Contractor should consider using two vertical lift points, each located near a panel point approximately 20 to 25% of the truss length from each end. 4. 'DC' and 'FC' shall include quantity and size of reinforcing steel.

FOUNDATION NOTES: 1. Design based on Borings taken

sealed by ____

2. For soil information, see 'Design Soil/Rock Parameters' table:

SIGN OHS - 1 OHS -OHS - . 0HS - .

OHS-

DESI	GN SOIL/RO	DCK PARAMET	ERS			
		SOIL PROPER	RTIES			
#	UPRIGHT	φ DEGREES	Ύ (EFFECTIVE) PCF			
1-2	LEFT	34	55			
- 2	RIGHT	32	51			
- 1	LEFT	33	52			
- 1	RIGHT	32	51			
- 2	LEFT	31	49			
· 2	RIGHT	32	50			
2	LEFT	31	49			
3 5	RIGHT	32	50			
	LEFT	32	53			
	RIGHT	32	53			

10/16/2019 9:22:28 AM C:\Projects\42835855201\struct\SignStructSpan12.dg

								DUAL POST UPRIG	HT DETA.	ILS									
			D	UAL POST	DIMENSIONS	5		BRACES	DUAL POST UPRIGHT GUSSET PLATES										
SIGN #	STATION	Y	В	Е	N	Х	Ζ	L	GM	GN	GO	GP	GQ	GR	GS	GT	GU	GV	
		in	ft	in	# (PNLS)	ft	in	Angle (in)	in	in	in	in	in	in	in	in	in	in	
0HS-1-2	267+00.083	108	23.18	108	2	4.84	96	Angle 6 x 6 x 1	1.0625	1.25	12	32	12.75	32	12.75	42.75	9	0.3125	
0HS-1	28+26	108	23.79	84	3	3.76	96	Angle 6 x 6 x 1	0.75	0.875	11.5	20.75	11.5	21.75	12	30.75	6.25	0.5	
0HS-2	36+10	108	23.6	84	3	3.7	96	Angle 6 x 6 x 1	0.625	1	15	20	15	21.75	15.5	28.75	7.25	0.4375	
0HS-3	6571+33	108	28.15	84	3	5.22	96	Angle 6 x 6 x 1	0.625	0.875	9.25	20.75	9.25	27.25	9.25	32.25	6.25	0.4375	
0HS-5	46+15.5	108	28.15	84	3	5.22	96	Angle 6 x 6 x 1	0.625	1	10.5	20	10.5	26.5	11	30.75	7.25	0.4375	

DUA	DUAL POST UPRIGHT DETAILS (CONT.)												
		DUAL BASE	CONNECTION										
SIGN #	BK	BM	BN	BP									
	in	in	in	in									
0HS-1-2	48	6.125	4.9375	3.5									
0HS-1	48	6.125	4.9375	3.5									
0HS-2	48	8.75	4.625	4.375									
0HS-3	48	6.125	4.9375	3.625									
0HS-5	48	8.75	4.625	4.375									

DUA	AL POST	UPRIGH	IT DETA	ILS (CO	NT.)
		l	BARRIER W	ALL COLUMI	V
SIGN #	UPRIGHT	ELEVA	TIONS	REINFOF	RCEMENT
		A1	В1	PR	PV (in)
0HS-1-2	LEFT	19.000	14.333	28	6
OHS-1	LEFT	19.000	14.333	28	6
0HS-2	LEFT	19.000	14.333	28	6
0HS-3	LEFT	19.000	14.333	28	6
0HS-5	LEFT	19.000	14.333	28	6

ESTIMATED QUANTITIES									
SIGN #	UPRIGHT	ITEM	UNIT	QUANTITY					
0HS-1-2	LEFT	Class IV Concrete (Barrier Wall)	СҮ	5.19					
085-1-2		Reinforcing Steel	LB	3752					
0HS-1	IFFT	Class IV Concrete (Barrier Wall)	СҮ	5.19					
0HS-1		Reinforcing Steel	LB	3752					
0HS-2	IFFT Class IV Concrete (Barrier Wa		СҮ	5.19					
		Reinforcing Steel	LB	3752					
0HS-3	LEFT Class IV Concrete (Barrier Wall) Reinforcing Steel		СҮ	5.19					
			LB	3752					
0HS-5	LEFT	Class IV Concrete (Barrier Wall)	СҮ	5.19					
005-5	LEFI	Reinforcing Steel	LB	3752					

NOTES:

BY DESCRIPTION DATE BY DESCRIPTION CHECKED BY: DEPARTMENT OF TRANSPORTATION DEPARTMENT OF TRANSPORTATION DESIGNED BY: ROAD NO. COUNTY FINANCIAL PROJECT ID DESIGNED BY: ROAD NO. COUNTY FINANCIAL PROJECT ID DESIGNED BY: COUNTY FINANCIAL PROJECT ID CHECKED BY: COUNTY FINANCIAL PROJECT ID		REVI	SIONS		DRAWN BY:		STATE OF FLORIDA			SHEET TITLE: DUAL POST UPRIGHT SPAN SIGN STRUCTURE		
DESIGNED BY: ROAD NO. COUNTY FINANCIAL PROJECT ID PROJECT NAME: GOLDEN GLADES INTERCHANGE	DATE BY	DESCRIPTION	DATE	BY DESCRIPTION	CHECKED BY:	DEPA	DEPARTMENT OF TRANSPORTATION					
					DESIGNED BY:	ROAD NO.			PROJECT NAME:			
CHECKEDBY: 3K 9A MIAMI-DADE 420306-3-32-01 SR 0A/LOS N OF RISCAYNE RIVER CANAL				CHECKED BY:	SR 9A	MIAMI-DADE	428358 - 5 - 52 - 01	1	GOLDEN GLADES INTERCHANGE SR 9A/I-95 N. OF BISCAYNE RIVER CANAL			

1. Design Wind Speed = 170 mph Design wind Speed = 170 mph
 Upright wall thickness given is a minimum dimension.
 Erection is the Contractor's responsibility. To facilitate erection, the Contractor should consider using two vertical lift points, each located near a panel point approximately 20 to 25% of the truss length from each end.

8/20/2019 2:39:06 PM C:\Projects\42835855201\struct\SignStructSpa

,						ORCEME				1		1		1		
SIGN #	COMPONENT		ARK		VGTH	NO.	ТҮРЕ		YLE		B		C		D	
		SIZE 6	DES B02	ft 5	in 10	BARS 40	4	A 4	G 4	ft 2	in 2	ft 1	in 8	ft -	in -	
0HS-1-2	BARRIER WALL	6	B02 B03	16	10	20	11	-	-	11	6	1	8	1	8	
		10	B03 B01	4	2	56	1	_	_	4	2		-	_	-	
		10	B01 B04	28	8	8	11	_	_	1	9	13	5	13	5	
		10	B05	13	5	16	1	_	_	13	5	-	-	-	-	
		6	B02	5	10	40	4	4	4	2	2	1	8	-	-	
0HS-1	BARRIER WALL	6	B03	16	1	20	11	-	-	11	6	1	8	1	8	
		10	B01	4	2	56	1	_	_	4	2	-	_	_	_	
		10	B04	28	8	8	11	-	-	1	9	13	5	13	5	
		10	B05	13	5	16	1	-	-	13	5	-	-	-	-	
0116 0		6	B02	5	10	40	4	4	4	2	2	1	8	-	-	
0HS-2	BARRIER WALL	6	B03	16	1	20	11	-	-	11	6	1	8	1	8	
		10	B01	4	2	56	1	-	-	4	2	-	-	-	-	
		10	B04	28	8	8	11	-	-	1	9	13	5	13	5	
		10	B05	13	5	16	1	-	-	13	5	-	-	-	-	
0H5-3	BARRIER WALL	6	B02	5	10	40	4	4	4	2	2	1	8	-	-	
6-6110	DANNILA WALL	6	B03	16	1	20	11	-	-	11	6	1	8	1	8	
		10	B01	4	2	56	1	-	-	4	2	-	-	-	-	
		10	B04	28	8	8	11	-	-	1	9	13	5	13	5	
		10	B05	13	5	16	1	-	-	13	5	-	-	-	-	
0HS-5	BARRIER WALL	6	B02	5	10	40	4	4	4	2	2	1	8	-	-	
0113 3	DANNENWALL	6	B03	16	1	20	11	-	-	11	6	1	8	1	8	
		10	B01	4	2	56	1	-	-	4	2	-	-	-	-	NO
		10	B04	28	8	8	11	-	-	1	9	13	5	13	5	1.
		10	B05	13	5	16	1	-	-	13	5	-	-	-	-	2.
																3.
												1				
										1	1	1	1	1		
										1	1					
										1	1					
				I						1						

	RE	DRAWN BY: STATE OF FLORIDA				REINFORCING BAR LIST			о.			
DATE	BY DESCRIPTION	DATE BY	DESCRIPTION		CHECKED BY:	DEPARTMENT OF TRANSPORTATION						
					DESIGNED BY:	ROAD NO.	COUNTY	FINANCIAL PROJECT ID		I GLADES INTERCHANGE	SHEET NO.	
				CHECK	CHECKED BY:	SR 9A	MIAMI-DADE	428358-5-52-01		I. OF BISCAYNE RIVER CANAL	5 - X	
							BD647	DC	8/20/2019 2:42:01 PM	C\\Projects\//2835855201\struct\SignStructSpan13.don		_

. Gee Index 415–001 for Bar Bending details (steel). The number of bars shown for the barrier wall einforcement accounts for the total number of bars eeded in the dual uprigth assembly. The Index 521-001 for Median Barrier Wall and Transition details.